Search This Blog

Tuesday, 24 May 2016

C3: DESING OF BEAM AS PER IS CODE

 BEAM DESIGN 
DIMENSIONS:
                       Size of the beam = 230*375 mm  
                     L   = 4.803 m
                                              d  = 230 mm
                                              D = 260 mm
                                              b  = 375 mm

LOADS:
Total load on beam = 35.17 KNm
                         Mu = 0.125*Wu*L2
                                = 0.125*35.17*4.8032
                          Mu = 102 KNm
                           Vu = WL/2  =  (35.17*4.803) / 2  =  70.34 KN

TENSION REINFORCEMENTS:
          Mu lim = 0.138*fck*b*d2
            = (0.138*20*375*2302)*10-6
          Mu lim = 29.2 KNm
           Since Mu < Mulim
The section is under reinforced.
               Mu = 0.87*fy*Ast*d*[(1)-((Ast*fy) / (fck*b*d))]
      29.2*10= 0.87*415*Ast*150*[(1)-((Ast*415) / (20*200*230))]
                         29.2*106  = 83041.5Ast – 37.4589375Ast2
 Ast  = 438 mm2
Provide 2 bars of 16mm diameter (Ast= 402 mm2) & 2 layer bars of 10 mm dia.

CHECK FOR SHEAR:
                                       Vu  = 70.34 KN
        Nominal shear stress (τv)  = Vu / bd
          = (70.34*103) / (230*375)
             τv = 1.52 N/mm2
% of tensile reinforcement Pt = 100Ast / bd
 = (100*402) / (230*375)
 = 1.005
From IS 456-2000, table 19.,
τc = 0.63 N/mm2
τc > τv
provide nominal shear reinforcement using 6mm dia of two-legged stirrups at spacing of,

SPACING:
   Sv = (Ast*0.87*fy) / (0.4*b)
        = (2*29.2*0.87*415) / (0.4*200)
        = 255 mm
  Sv  = (0.75*d) = 0.57*200 > 150mm
Provide stirrups spacing = 150 mm

CHECK FOR DEFLECTION CONTROL:
 Pt = 1.005
Modification factor, Kt = 1.05 & by lecting the hangerbar.
(L/d)max = (L/d)basic*Kt*Kc*Kf
               = 20*1.05*1*1.05
               = 22
                  (L/d)actual = 4803/200 = 24
Since (L/d)max = (L/d)basic
Deflection control is satisfactory.

DESIGN USING SP-16 DESIGN TABLES:
Mu/bd2 = (29.2*106) / (200*2302) = 2.76
Refer table sp-16,
          Pt = 0.958
        Ast = Pt*b*d / 100
              = (0.958*200*230) / 100
              = 441 mm2

Hence Ast is the same as flat computed using theoretical equation.

No comments: