SUNSHADE
DESIGN
LONGER SPAN:
Length of sunshade
= 5.248 m
Width of sunshade
= 450 mm = 0.45 m
Thickness @ fixed end = 150 mm = 0.15 m
Thickness @ free end
= 60 mm = 0.06 m
fck = 20 N/mm2 & fy =
415 N/mm2
Clear cover
= 25 mm
SUse 8 mm
dia bar
EFFECTIVE DEPTH:
d = D – cc – (dia/2) – dia
= 150 – 25 – (8/2)
– 8
d = 113 mm
LOAD CALCULATION:
Self weight of sunshade = L x b x d x γ
= 5.248
x 0.45 x [(0.15+0.06) / 2] x 25
= 6.1992
KN
Imposed load = L x b x d x 15
= 5.248 x 0.45 x
0.150 x 15
= 5.3136
KN
Total load = 6.1992 + 5.3136 =
11.5128 KN
Design load = 1.5 x 11.5128 =
17.2692 KN
BENDING MOMENT:
Max BM, Mu = Wl / 8
= (17.2692 x 5.248) / 8
= 11.32 KNm.
EFFECTIVE DEPTH REQUIRED:
d2 = (Mu) / (0.138 x fck x b)
= (11.32 x 106)
/ (0.138 x 20 x 450)
d = 95.46 mm ≃ 96 mm
∴ 113 mm > 96 mm
Hence
safe.
AREA OF STEEL:
Xu (max) = 0.48 x d
= 0.48 x 113 = 54.24 mm
Mu = 0.87
x fy x Ast x [ d – (0.42 x Xu max)]
11.32 x 106 = 0.87 x 415 x Ast x [ 113 – ( 0.42 x
54.24 )]
Ast =
347.5 mm2 ≃ 350 mm2
Ast min = 0.12 %
of Ag
= (
0.12 / 100 ) x 450 x 150
= 81
mm2
Provide 8 mm dia bars.
SPACING:
Spacing = ( ast / Ast ) x 1000
= ( 81 /
350) x 1000
= 231.4
mm ≃ 200 mm spacing.
SPACING LIMIT:
i ) Max spacing = 3d = 3 x 113 = 339 mm
ii ) 300 mm
Provide 8 mm dia bars @ 200 mm c/c spacing.
DISTRIBUTION BARS:
Ast = 81 mm2
Provide 6 mm dia bars
∴ ast = ( π / 4) x d2
= ( π / 4 )
x 62
= 28.27 mm2
Spacing = ( ast / Ast ) x 1000
= ( 28.27 /
81 ) x 1000
= 349 mm ≃ 350 mm.
SPACING LIMIT:
i ) Max spacing = 5d = 5 x 113 = 565 mm
ii ) 300 mm
Provide 6 mm dia bars @ 350 mm c/c spacing.
RESULT:
Overall depth, D =
150 mm
Effective depth, d =
113 mm
Provide 8 mm dia of main bars @ 200 mm c/c spacing.
Provide 6 mm dia of distribution bars @ 250 mm c/c spacing.
SHORTER SPAN:
Length of sunshade
= 3.280 m
Width of sunshade
= 450 mm = 0.45 m
Thickness @ fixed end = 150 mm = 0.15 m
Thickness @ free end
= 60 mm = 0.06 m
fck = 20 N/mm2 & fy =
415 N/mm2
Clear cover
= 25 mm
Use 8 mm dia
bar
EFFECTIVE DEPTH:
d = D – cc – (dia/2)
= 150 – 25 – (8/2)
d = 121 mm
LOAD CALCULATION:
Self weight of sunshade = L x b x d x γ
= 3.280
x 0.45 x [(0.15+0.06) / 2] x 25
= 3.8745
KN
Imposed load = L x b x d x 15
= 3.280 x 0.45 x 0.150 x 15
= 3.321
KN
Total load = 3.8745 + 3.321 = 7.1955 KN
Design load = 1.5 x 7.1955 = 10.79325 KN
BENDING MOMENT:
Max BM, Mu = Wl / 8
= (10.8 x 3.280) / 8
= 4.428 KNm.
EFFECTIVE DEPTH REQUIRED:
d2 = (Mu) / (0.138 x fck x b)
= (4.428 x 106)
/ (0.138 x 20 x 450)
d = 59.70 mm ≃ 60 mm
∴ 121 mm > 60 mm
Hence
safe.
AREA OF STEEL:
Xu (max) = 0.48 x d
= 0.48 x 121 = 58.08 mm
Mu = 0.87
x fy x Ast x [ d – (0.42 x Xu max)]
4.428 x 106 = 0.87 x 415 x Ast x [ 121 – ( 0.42 x
58.08 )]
Ast = 126
mm2
Ast min = 0.12 %
of Ag
=
( 0.12 / 100 ) x 450 x 150
=
81 mm2
Provide 8 mm dia
bar
SPACING:
Spacing = ( ast / Ast ) x 1000
= ( 81 /
126 ) x 1000
= 642.8
mm ≃ 640 mm spacing.
SPACING LIMIT:
i ) Max spacing = 3d = 3 x 121 = 363 mm
ii ) 300 mm
Provide 8 mm dia bars @ 300 mm c/c spacing.
DISTRIBUTION BARS:
Ast = 81 mm2
Provide 6 mm dia
bars
∴ ast
= ( π / 4) x d2
= ( π /
4 ) x 62
= 28.27
mm2
Spacing = ( ast / Ast ) x 1000
= (
28.27 / 81 ) x 1000
= 349 mm
≃ 350 mm.
SPACING LIMIT:
i ) Max spacing = 5d = 5 x 121 = 605 mm
ii ) 300 mm
Provide 6 mm dia bars @ 350 mm c/c spacing
RESULT:
Overall depth, D =
150 mm
Effective depth, d =
121 mm
Provide 8 mm dia of main bars @ 300 mm c/c spacing.
Provide 6 mm dia of
distribution bars @ 350 mm c/c spacing
3 comments:
Thank you very much
I know some ideas.thanks
Really helpfull
Post a Comment